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Outline

• Review last class
• Introduction to numerical methods
• Finite representation of numbers
• Error propagation and round-off error
• Practical considerations in solutions
• Use of pivoting to improve accuracy in 

solutions of simultaneous linear 
algebraic equations
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Review Eigens

• Eigenvalues and eigenvectors: Ax = x

• Computations using Det[A – I] = 0

• Eigenvectors determined by [A – I]x = 
0 only to a multiplicative constant

• Define X as matrix where each column 
is an eigenvector

• Transformations with a matrix of 
eigenvectors:  = X-1AX

4

Review Other Matrices

• Orthogonal matrices had orthonormal 
rows and orthonormal columns

• The inverse of an orthogonal matrix is 
its transpose

• The eigenvalues of a Hermitian matrix 
(A* = AT) are real

• An n x n Hermitian matrix has n linearly 
independent, orthogonal eigenvalues 
that can form a unitary matrix

5

Computer Representations

• Computer is binary machine
– Numbers represented as series of zeros 

and one

– Basic forms are integers and floating point

– Integers numbers have small range, but 
exact representation, used for counting

– Floating point numbers have wide range, 
but inexact representation

– Accuracy and range depend on word size

6

Representing Integers

• Represented as binary number with 
offset for negative numbers

• Typical computer uses 32 bits (4 bytes) 
for integer giving range of 0 to 232 – 1

• Offsets give range from –231 to 231 – 1

• Adding one to maximum integer gives 
minimum integer: (231 – 1) + 1 = –231

• Different computers/compilers have 
different sizes and signed/unsigned
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Floating Point Numbers

• Typical sizes are 4 bytes for single 
precision and 8 for double precision

• Number has sign bit, exponent 
(characteristic) and mantissa

• IEEE 754 (1985) standard for double
– 11 bits for exponent
– 1 sign bit
– 53 effective bits for mantissa because 

leading one is not stored

8

Machine Epsilon
• Smallest value such that 1 +   1

• Depends on mantissa bits

• Usually 1.19x10-7 for single and    
2.22x10-16 for double
– Single almost seven significant figures

– Double has fifteen-plus significant figures

• Is 10 times 0.1 = 1?  Maybe
– 0.110 = 0.0001100110011001100110011…2

– 0.110 = 1.1001100110011001100112x102
-100

2

9

Rounding Error

• Due to inexact representation

• Store floating point representation    of 
actual number x with error x

• Errors propagate in multiple calculations
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Multiplication/Division Error

• Have same result for each although 
definitions and derivations are different
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• Definitions

• Common result
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Avoiding Round-off Error

• Use higher precision data types

• Beyond single and double there is 
extended precision with some compilers

• Systems of equations with large number 
of equations or nearly singular systems 
can require double precision

• Algorithms can be designed to reduce 
round-off error

12

Quadratic Real Roots

disc = b * b – 4 * a * c;

if ( disc >= 0 )

{  // real solution here

if ( b > 0 )

x1 = (-b – sqrt(disc) ) / ( 2 * a );

else

x1 = (-b + sqrt(disc) ) / ( 2 * a );

x2 = c / ( a * x1 );

}

a

c
xx 21
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Gauss Elimination

• Covered previously while discussing 
solution of systems of equations

• Analytical tool for determining linear 
dependence or independence

• Basic idea is to manipulate the 
equations (or data) to make them easier 
to solve without changing the results

• Systematically create zeros in lower left 
part of the equations (or data)
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Upper Triangular Form
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• Convert original set of equations to
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Back Substitution

• Upper triangular form on previous slide 
is easily solved by back substitution

• xn = n/nn

• xn-1= (n-1 – n-1 nxn)/n-1 n-1, et cetera
• General equation for back substitution
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Gauss Elimination Algorithm

• Work on augmented matrix

• Can handle several b vectors at one time
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General Gauss Elimination

• Use each row from row 1 to row n-1 as 
the “pivot” row
– Work on each row below the pivot row

• Multiply pivot row by arow,pivot/apivot,pivot

• Subtract result from row “row” to make arow,pivot = 0
• Operation requires subtraction for each column of 

A right of pivot column and for b

– Repeat for each row below pivot (except last)

• Use back substitution for x values
• Worry about round-off error that depends 

on the “condition” of the A matrix
18

Problem Condition

• The condition of a problem is defined as 
the relative change in result divided by a 
relative change in input

• A large condition number indicates a 
problem that may give rise to numerical 
difficulty

• In solution of one equation in one 
unknown f(x) = 0 a small value of df/dx 
near the root can cause problems
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Solving Nonlinear Equations

• Have a system of N simultaneous 
nonlinear equations written as f(x) = 0

• Multivariable Newton’s method
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Solving Nonlinear Equations II

• Have to solve N simultaneous linear 
equations at each iteration with f(x(n+1)) = 0
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• Iterations are affected by physical 
system through partial derivatives
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Solving Nonlinear Equations III

• Thermodynamic property equations are 
functions of temperature and density

• Want to define state by other properties 
(e. g., pressure and entropy)

• Newton’s method iteration equations

• Solve by Cramer’s rule
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Solving Nonlinear Equations IV

• Large partial derivative makes 
solution ill conditioned
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Condition of a Matrix I

• Need norms to represent size
• Use matrix norm that is consis-

tent with definition of vector 
norm

input
inputinChange

result
resultinChange

Condition 

AxxA
x

Ax

x

Ax
A

x
 max

x

Ax
A

x
max

24

Condition of a Matrix II

• Both Ax and x are matrices

• Can use any matrix norm to 
compute ||A|| 

x

Ax
A

x
max

• Choosing infinity 
norm as vector norm 
gives row sum

• Choosing one norm 
as vector norm gives 
column sum
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Condition of a Matrix III

• Correct and incorrect solutions are x and

• Computable error residual, r = b - A
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Condition of a Matrix IV

• Define the relative size of the residual as 
||r|| / ||b|| (which we can calculate)

b

r
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b

r
AA

x

xx
)(

~
1 

 

• Condition number (A) ||A|| ||A-1||

• Small is < 10; large is about 100 or more

• Expect large condition numbers to create 
problems in solutions
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Condition of a Matrix V

• Ill conditioning comes from near linear 
dependence in matrix rows











11

99999.000001.1
A 













5.5000050000

5.49999500001A

||A|| = 2 ||A||1 = 2.00001        
||A-1|| = 100000.5 ||A -1||1 = 100000

Condition number = 200001 confirming 
ill conditioning apparent from original A
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Condition of a Matrix VI

• Equations [B-5] and [B-12] in notes show 
that changes or errors in A or b affect 
solution through the condition number
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Reducing Round-off Error

• Example of equation order for problem 
with known solution: x = 2/3, y = 1/3



















































0002.1

1

300003.0

11

1

0002.1

11

300003.0

x

y

y

x

• Gauss elimination gives
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• Look at effect of precision on solutions

original order order reversed
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N = Number of Significant Figures

N Original problem Equations reversed

x y x y

5 .33333 .70000 .33333 .66667

6 .333333 .670000 .333333 .666667

7 .3333333 .6670000 .3333333 .6666667

8 .33333333 .66670000 .33333333 .66666667



Introduction to Numerical Methods in 
Linear Algebra

September 20, 2017

ME 501A Seminar in Engineering 
Analysis Page 6

31

What Happened?

• Problem is in the 1 – 1.0002/0.0003 term
• Division inaccuracy swamps subtraction
• Try to have large elements on pivot row to 

avoid such divisions
• Pivoting strategy: Use row with maximum 

(scaled) element as pivot row
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Original Rows Reversed

More on Pivoting

• Can exchange rows or columns to get 
maximum element on pivot

• Exchanging rows only is easier and 
often effective
– Commonly used in earlier programs

– Exchanging columns changes the identity 
of the unknowns requiring more computer 
work to keep track of changes

• Newer software now exchanges both
32

Command Window 
to enter commands 
and get results

Windows 
for files 
you write 
in 
MATLAB

Use up-arrow to 
get previous 
commands from 
command history 
(can edit and 
execute again)

Double-click 
command 
history here to 
execute again 
without edits

List of current 
variables and 
their values

Can get 
help from 
menu or 
typing help 
<item> at 
command 
line

Command

Result

Entering Arrays

– Enter a row 
vector by 
enclosing data 
in [ ] separated 
by a space 

34

>> row = [12  -3  5  7  0]
row =

12    -3     5     7     0

>> col = [-3; 6; 0; 4]
col =

-3
6
0
4

– Enter a column 
vector by 
enclosing data, 
separated by a 
semicolon (;) in [ ]

Entering a Matrix

– Enter matrix data row by 
row

– Put spaces between 
data in the same row

– Put a semicolon to start 
data on next row

• MATLAB uses the … as 
a continuation signal

• After the …  hit Enter and 
continue input of same 
command on a new line

35

>> A=[1 2; 3 4]
A =

1     2
3     4

>> B = [1 2 3; 4...
5 6; 7 8...
9]

B = 
1     2     3
4     5     6
7     8     9

Entering a Matrix II

– Pressing enter after 
each row of data can be 
used to enter a matrix

– Using semicolons, all 
data can be placed on 
one row (see below)

– Continuation is only 
needed to start new line 
in the middle of data 
entry

36

>> B = [1 2 3; 4...
5 6; 7 8 9]

>> B = [1 2 3; 4 5 6; 7 8 9]

>> B = [1 2 3
4 5 6
7 8 9] 

B = 
1     2     3
4     5     6
7     8     9

(Result)
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MATLAB Linear Solver

• For an n x n matrix A, and a n x m right-
hand side matrix b MATLAB produces a 
n x m solution x = A-1b by either of the 
following commands
– x = A/b 

– x = mldivide(A, b)

• Each column of the x result contains the 
solution of Ax = b for the corresponding 
column of the b array

37

MATLAB Eigenvalues/vectors

• Use function eig for both eigenvalues 
and eigenvectors

• Basic command is [V,D] = eig(A)
– A is a square matrix

– D is a diagonal matrix giving the eigen-
values of A on the diagonal (Λ matrix)

– V is a square matrix whose columns are 
the eigenvectors of A (X matrix)

38

Excel Data to MATLAB

>> A = xlsread(‘Gaussian.xlsm’, ‘Data’, 
‘B6:CW105’);

>> b = xlsread(‘Gaussian.xlsm’, ‘Data’, 
‘CX6:DI105’);

>> xExact = xlsread(‘Gaussian.xlsm’, 
‘Answers’, ‘B3:M102’);

>> x = A\b

>> RMS = sqrt(mean(x – xExact).^2)

39

Data Range

File Name Worksheet


