
Introduction to Numerical Methods in
Linear Algebra

September 20, 2017

ME 501A Seminar in Engineering
Analysis Page 1

Introduction to Numerical
Methods in Linear Algebra

Larry Caretto
Mechanical Engineering 501A

Seminar in Engineering
Analysis

September 20, 2017

2

Outline

• Review last class
• Introduction to numerical methods
• Finite representation of numbers
• Error propagation and round-off error
• Practical considerations in solutions
• Use of pivoting to improve accuracy in

solutions of simultaneous linear
algebraic equations

3

Review Eigens

• Eigenvalues and eigenvectors: Ax = x

• Computations using Det[A – I] = 0

• Eigenvectors determined by [A – I]x =
0 only to a multiplicative constant

• Define X as matrix where each column
is an eigenvector

• Transformations with a matrix of
eigenvectors:  = X-1AX

4

Review Other Matrices

• Orthogonal matrices had orthonormal
rows and orthonormal columns

• The inverse of an orthogonal matrix is
its transpose

• The eigenvalues of a Hermitian matrix
(A* = AT) are real

• An n x n Hermitian matrix has n linearly
independent, orthogonal eigenvalues
that can form a unitary matrix

5

Computer Representations

• Computer is binary machine
– Numbers represented as series of zeros

and one

– Basic forms are integers and floating point

– Integers numbers have small range, but
exact representation, used for counting

– Floating point numbers have wide range,
but inexact representation

– Accuracy and range depend on word size

6

Representing Integers

• Represented as binary number with
offset for negative numbers

• Typical computer uses 32 bits (4 bytes)
for integer giving range of 0 to 232 – 1

• Offsets give range from –231 to 231 – 1

• Adding one to maximum integer gives
minimum integer: (231 – 1) + 1 = –231

• Different computers/compilers have
different sizes and signed/unsigned

Introduction to Numerical Methods in
Linear Algebra

September 20, 2017

ME 501A Seminar in Engineering
Analysis Page 2

7

Floating Point Numbers

• Typical sizes are 4 bytes for single
precision and 8 for double precision

• Number has sign bit, exponent
(characteristic) and mantissa

• IEEE 754 (1985) standard for double
– 11 bits for exponent
– 1 sign bit
– 53 effective bits for mantissa because

leading one is not stored

8

Machine Epsilon
• Smallest value such that 1 +   1

• Depends on mantissa bits

• Usually 1.19x10-7 for single and
2.22x10-16 for double
– Single almost seven significant figures

– Double has fifteen-plus significant figures

• Is 10 times 0.1 = 1? Maybe
– 0.110 = 0.0001100110011001100110011…2

– 0.110 = 1.1001100110011001100112x102
-100

2

9

Rounding Error

• Due to inexact representation

• Store floating point representation of
actual number x with error x

• Errors propagate in multiple calculations

yx yyxx   ~~

   yxyx yxyxyx   ~~~~

   
yxyxyx

yxyx yxyx
rel ~~

~~



















x~

10

Multiplication/Division Error

• Have same result for each although
definitions and derivations are different

y
x

y
x

y
x

rel

~

~



xy

yxxy
rel

~~


yx
yx

rel ~~
 

• Definitions

• Common result

11

Avoiding Round-off Error

• Use higher precision data types

• Beyond single and double there is
extended precision with some compilers

• Systems of equations with large number
of equations or nearly singular systems
can require double precision

• Algorithms can be designed to reduce
round-off error

12

Quadratic Real Roots

disc = b * b – 4 * a * c;

if (disc >= 0)

{ // real solution here

if (b > 0)

x1 = (-b – sqrt(disc)) / (2 * a);

else

x1 = (-b + sqrt(disc)) / (2 * a);

x2 = c / (a * x1);

}

a

c
xx 21

Introduction to Numerical Methods in
Linear Algebra

September 20, 2017

ME 501A Seminar in Engineering
Analysis Page 3

13

Gauss Elimination

• Covered previously while discussing
solution of systems of equations

• Analytical tool for determining linear
dependence or independence

• Basic idea is to manipulate the
equations (or data) to make them easier
to solve without changing the results

• Systematically create zeros in lower left
part of the equations (or data)

14

Upper Triangular Form































































































n

n

n

n

nn

nn

n

n

n

nn

n

n

n

x

x

x

x

x





















1

3

2

1

1

3

2

1

1

3

2

1

11

1333

122322

11131211

0000

000

00

0























• Convert original set of equations to

15

Back Substitution

• Upper triangular form on previous slide
is easily solved by back substitution

• xn = n/nn

• xn-1= (n-1 – n-1 nxn)/n-1 n-1, et cetera
• General equation for back substitution

1,,2,11






 nni

x

x
ii

n

ij
jiji

i 



16

Gauss Elimination Algorithm

• Work on augmented matrix

• Can handle several b vectors at one time





























nnmnnn

m

m

m

b

b

b

b

aaaa

aaaa

aaaa

aaaa

















3

2

1

321

3333231

2232221

1131211

],[bA

17

General Gauss Elimination

• Use each row from row 1 to row n-1 as
the “pivot” row
– Work on each row below the pivot row

• Multiply pivot row by arow,pivot/apivot,pivot

• Subtract result from row “row” to make arow,pivot = 0
• Operation requires subtraction for each column of

A right of pivot column and for b

– Repeat for each row below pivot (except last)

• Use back substitution for x values
• Worry about round-off error that depends

on the “condition” of the A matrix
18

Problem Condition

• The condition of a problem is defined as
the relative change in result divided by a
relative change in input

• A large condition number indicates a
problem that may give rise to numerical
difficulty

• In solution of one equation in one
unknown f(x) = 0 a small value of df/dx
near the root can cause problems

Introduction to Numerical Methods in
Linear Algebra

September 20, 2017

ME 501A Seminar in Engineering
Analysis Page 4

19

Solving Nonlinear Equations

• Have a system of N simultaneous
nonlinear equations written as f(x) = 0

• Multivariable Newton’s method

       )()1()()()1(nnnnn xxJxfxf

)(

)(

n

m

kn

x

f




J





























































































































































0

0

0

0

)(

)(

)(

)(

)(

)(

)(

)(

)()1(

)(
3

)1(
3

)(
2

)1(
2

)(
1

)1(
1

321

3333231

2232221

1131211

)(

)(
3

)(
2

)(
1

)1(

)1(
3

)1(
2

)1(
1





























n
N

n
N

nn

nn

nn

NNNNN

N

N

N

n
N

n

n

n

n
N

n

n

n

xx

xx

xx

xx

JJJJ

JJJJ

JJJJ

JJJJ

f

f

f

f

f

f

f

f

x

x

x

x

x

x

x

x

20

Solving Nonlinear Equations II

• Have to solve N simultaneous linear
equations at each iteration with f(x(n+1)) = 0

   






 




N

m

n
m

n
m

n

m

kn
k

N

m

n
m

n
mkm

n
k

n
k xx

x

f
fxxJff

1

)()1(

)(

)(

1

)()1()()1()()()(xxx

   )()(

1

)()1(

)(

1

)()1(n
k

N

m

n
m

n
m

n

m

k
N

m

n
m

n
mkm fxx

x

f
xxJ x




 








• Iterations are affected by physical
system through partial derivatives

21

Solving Nonlinear Equations III

• Thermodynamic property equations are
functions of temperature and density

• Want to define state by other properties
(e. g., pressure and entropy)

• Newton’s method iteration equations

• Solve by Cramer’s rule

     

     )()(
0

)()1()()1(

)()(
0

)()1()()1(

,

,

nnnnnn

nnnnnn

vTPPvv
v

P
TT

T

P

vTssvv
v

s
TT

T

s





















22

Solving Nonlinear Equations IV

• Large partial derivative makes
solution ill conditioned

 
     

 
     

T
P

v
s

v
P

T
s

vTss
T
P

vTPP
T
s

vv

T
P

v
s

v
P

T
s

vTPP
v
s

vTss
v
P

TT

nnnn

nn

nnnn

nn



















































)()(
0

)()(
0

)()1(

)()(
0

)()(
0

)()1(

,,

,,

v
P



23

Condition of a Matrix I

• Need norms to represent size
• Use matrix norm that is consis-

tent with definition of vector
norm

input
inputinChange

result
resultinChange

Condition 

AxxA
x

Ax

x

Ax
A

x
 max

x

Ax
A

x
max

24

Condition of a Matrix II

• Both Ax and x are matrices

• Can use any matrix norm to
compute ||A||

x

Ax
A

x
max

• Choosing infinity
norm as vector norm
gives row sum

• Choosing one norm
as vector norm gives
column sum





n

i
ij

j
a

1
1

maxA







n

j
ij

i
a

1

maxA

Introduction to Numerical Methods in
Linear Algebra

September 20, 2017

ME 501A Seminar in Engineering
Analysis Page 5

25

Condition of a Matrix III

• Correct and incorrect solutions are x and

• Computable error residual, r = b - A
x~

x~

  rxxAxAAxxAbr  ~~~

  rArAxxrAxx 111 ~~  

b

A

x
xAAxb 

1

b

A
rA

x
rA

x

xx 11 1~
 



26

Condition of a Matrix IV

• Define the relative size of the residual as
||r|| / ||b|| (which we can calculate)

b

r
A

b

r
AA

x

xx
)(

~
1 

 

• Condition number (A) ||A|| ||A-1||

• Small is < 10; large is about 100 or more

• Expect large condition numbers to create
problems in solutions

27

Condition of a Matrix V

• Ill conditioning comes from near linear
dependence in matrix rows











11

99999.000001.1
A 













5.5000050000

5.49999500001A

||A|| = 2 ||A||1 = 2.00001
||A-1|| = 100000.5 ||A -1||1 = 100000

Condition number = 200001 confirming
ill conditioning apparent from original A

28

Condition of a Matrix VI

• Equations [B-5] and [B-12] in notes show
that changes or errors in A or b affect
solution through the condition number

A

δA
A

x

δx

δxx

δx
)(



b

δb
A

x

δx
)(

29

Reducing Round-off Error

• Example of equation order for problem
with known solution: x = 2/3, y = 1/3



















































0002.1

1

300003.0

11

1

0002.1

11

300003.0

x

y

y

x

• Gauss elimination gives























































 9999.0

1

9997.20

11

0003.0

0002.1
1

0002.1

99990

300003.0

x

y

y

x

• Look at effect of precision on solutions

original order order reversed

30

N = Number of Significant Figures

N Original problem Equations reversed

x y x y

5 .33333 .70000 .33333 .66667

6 .333333 .670000 .333333 .666667

7 .3333333 .6670000 .3333333 .6666667

8 .33333333 .66670000 .33333333 .66666667

Introduction to Numerical Methods in
Linear Algebra

September 20, 2017

ME 501A Seminar in Engineering
Analysis Page 6

31

What Happened?

• Problem is in the 1 – 1.0002/0.0003 term
• Division inaccuracy swamps subtraction
• Try to have large elements on pivot row to

avoid such divisions
• Pivoting strategy: Use row with maximum

(scaled) element as pivot row























































 9999.0

1

9997.20

11

0003.0

0002.1
1

0002.1

99990

300003.0

x

y

y

x

Original Rows Reversed

More on Pivoting

• Can exchange rows or columns to get
maximum element on pivot

• Exchanging rows only is easier and
often effective
– Commonly used in earlier programs

– Exchanging columns changes the identity
of the unknowns requiring more computer
work to keep track of changes

• Newer software now exchanges both
32

Command Window
to enter commands
and get results

Windows
for files
you write
in
MATLAB

Use up-arrow to
get previous
commands from
command history
(can edit and
execute again)

Double-click
command
history here to
execute again
without edits

List of current
variables and
their values

Can get
help from
menu or
typing help
<item> at
command
line

Command

Result

Entering Arrays

– Enter a row
vector by
enclosing data
in [] separated
by a space

34

>> row = [12 -3 5 7 0]
row =

12 -3 5 7 0

>> col = [-3; 6; 0; 4]
col =

-3
6
0
4

– Enter a column
vector by
enclosing data,
separated by a
semicolon (;) in []

Entering a Matrix

– Enter matrix data row by
row

– Put spaces between
data in the same row

– Put a semicolon to start
data on next row

• MATLAB uses the … as
a continuation signal

• After the … hit Enter and
continue input of same
command on a new line

35

>> A=[1 2; 3 4]
A =

1 2
3 4

>> B = [1 2 3; 4...
5 6; 7 8...
9]

B =
1 2 3
4 5 6
7 8 9

Entering a Matrix II

– Pressing enter after
each row of data can be
used to enter a matrix

– Using semicolons, all
data can be placed on
one row (see below)

– Continuation is only
needed to start new line
in the middle of data
entry

36

>> B = [1 2 3; 4...
5 6; 7 8 9]

>> B = [1 2 3; 4 5 6; 7 8 9]

>> B = [1 2 3
4 5 6
7 8 9]

B =
1 2 3
4 5 6
7 8 9

(Result)

Introduction to Numerical Methods in
Linear Algebra

September 20, 2017

ME 501A Seminar in Engineering
Analysis Page 7

MATLAB Linear Solver

• For an n x n matrix A, and a n x m right-
hand side matrix b MATLAB produces a
n x m solution x = A-1b by either of the
following commands
– x = A/b

– x = mldivide(A, b)

• Each column of the x result contains the
solution of Ax = b for the corresponding
column of the b array

37

MATLAB Eigenvalues/vectors

• Use function eig for both eigenvalues
and eigenvectors

• Basic command is [V,D] = eig(A)
– A is a square matrix

– D is a diagonal matrix giving the eigen-
values of A on the diagonal (Λ matrix)

– V is a square matrix whose columns are
the eigenvectors of A (X matrix)

38

Excel Data to MATLAB

>> A = xlsread(‘Gaussian.xlsm’, ‘Data’,
‘B6:CW105’);

>> b = xlsread(‘Gaussian.xlsm’, ‘Data’,
‘CX6:DI105’);

>> xExact = xlsread(‘Gaussian.xlsm’,
‘Answers’, ‘B3:M102’);

>> x = A\b

>> RMS = sqrt(mean(x – xExact).^2)

39

Data Range

File Name Worksheet

